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Abstract 

Let H be a Hilbert space, A the yon Neumann algebra of a|l bounded operators on/7, B a 
yon Neumann subalgebra of A, and w a bounded linear functional on A. The functional 
w is said to commute with B E A if w(AB) = w(BA) for allA ~ A. It is shown that the 
map B k-~w(BAB) is a complex measure on the ortliocomplemented partially ordered set 
of all orthogonal projections in B for every A ~ A if and only ff w commutes with all 
members of B. For any A ~ A, the conditional expectation of A with respect to B and w 
is defined and it is shown that this expectation exists for an Abelian separable B if w 
commutes with all members of B. Using Gleason's theorem it is shown that w commutes 
with B if and only if the density operator of w commutes with B. 

S. Gudder and J. P. Marchand (1972) (in the sequel this paper will be referred 
to as G~I) developed an extensive noncommutative probability theory of yon 
Neumann algebras. Although the basic not ion of this theoly, conditional 
expectation with respect to a yon Neumann subalgebra, can be defined for 
arbitrary von Neumann algebras, the condition for the existence of conditional 
expectation is expressed in terms of the density operator corresponding to 
the measure in question and requires the use of Gleason's theorem. Conse- 
quently, the theory and proofs depend on Gleason's theorem. In this article 
we would like to show that the definition and condition for the existence 
of conditional expectation can be expressed without a priori introducing 
density operators and without referring to Gleason's theorem. To this aim 
we introduce tile notion of a functional commuting with an operator which 
has interest of its own. Finally, we relate our results to Gleason's theorem. 

Let H b e  a Hilbert space, A a yon Neumann algebra of bounded linear 
operators on H, Pa the set of all self-adjoint projections in A. A measure on 
PA is a non-negative mapping w: PA -+ R+ such that (1) w(0) = 0, (2) w(1~ Aa = 
£ w(Ai)  for every finite set of mutually orthogonal projections in P a :  If (2) 
holds for every countable set of  mutually orthogonat projections in PA, then 
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w is said to be a o-measure. If  Visa  3anach space, a V-valued measure on iDA 
iS a map w: PA -+ V satisfying ( I )  and (2). By A* we denote the dual space of  
A (the space of  bounded linear fu:~ctio:~ais on A). A is assumed to be endowed 
with the uniform topology, A* with the weak-,-topology. If  w E A*, then w 
restricted to PA is a complex-valued measure. I f  w is positive, then w restricted 
to PA is a measure. If  a positive w E A* restricted to PA yields a o-measure, 
then w is said to be an integral on A. 

Definition 1. Let A C A and w ~ A*. By A w  we denote the functional in 
A* defined by A w ( B )  = w(AB)  for all B E A. Similarly, w A  denotes the func- 
tional in A* defined by wA(B)  = w(BA)  for all B E A. 

It is clear that for a fixed A the map B ~-~ w(AB)  is linear and the functional 
A w  is bounded, because 

Iw(AB)I  tlw[l tlAll NBII 
A w  = sup - -  ~ - l twl t  IIAIt 

B~o IIBtl liBli 

(similarly for the functional wA).  
The maps (A, w)  ~--~ A w  and (w, A)  ~-~ wA are bilinear maps of A x A* and 

A* x A into A *  respectively. For simpficity, we shall call these maps left and 
right multiplications o f  functionals by operators. It is evident that the opera- 
tion of  multiplication defined above is associative, i.e., (Aw)B = A(wB) ,  
(AB)w = A(Bw) ,  and so on. When introducing parentheses, one has to dis- 
tinguish between the evaluation of  a functional in A* at some operator in A 
and the multiplication of  that functional by this operator. For example, 
wAB = (wA)B is a functional in A, whereas wA(B)  is a complex number (the 
value of  wA at B). Concluding these remarks let us observe that from the 
definition of  weak-,-topology in A* it follows that, for a fixed w, the maps 
B ~ B w  and B ~-~ wB are continuous from A into A *  

Definition 2. Let w E A* and A E A. We say that w commutes with A if 
wA = Aw. I f X C A, we say that w commutes with X if Aw = wA for all 
A E X .  

If  w ~ A*, from the continuity of our multiplication with respect to both 
factors it follows that the maps B ~-+Bw and B ~-+wB are A*-valued measures 
on PA- There arises a natural question under what conditions the map 
B ~--~BwB is an A*-valued measure. The answer is given in the following 
theorem. 

Theorem 1. Let A be a von Neumann algebra and B C A a von 
Neumann subalgebra o f  A (containing the identity I). Let w be a 
functional in A* Then the following conditions are equivalent: 
(1) The map ~ : B  ~-~BwB is an A*-valued measure on P~. 
(2) w commutes with pm 
(3) w commutes with B. 

P roo f  It is obvious that (3) implies (2). Assume that (2) holds. Then for 
any B E P  B we have ~(B) = BwB =(Bw)B = (wB)B = wB 2 = wB. Taking B = 
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2 B/, where B/is a finite sequence of  mutually orthogonal projections in PB, 
we get 

w = w  E Bi = E w~i = E w(l~i) 
i 1 i = i  i=1  i=1  

Thus ~ is an A*-valued measure on PB- 
Next assume that (1) holds. Let B EPI3. We have 

~'(B + B J-) = ~ ( [ )  = I w I  = w 

On the other hand, since w is a measure, we have 

ff~(B + B ±) = ~;(B) + N(B)  = B w B  + (I  - B ) w ( I  - B )  = 2 B w B  - B w  - w B  + w 

Comparing both results We get 2 B w B  = B w  + wB. Multiplying on the left and 
on the right by B and taking into account that B 2 = B we obtain B w B  = w B  = 

Bw,  which shows that w commutes with PB, the set of  all projections in B. 
Hence (2) holds. 

It remains to show that (2) implies (3). Using the spectral theorem it is 
easy to show that w commutes with all self-adjoint elements in B. I f  T ¢  B is 
arbitrary, T can be represented as T = A 1 + iA  2 with A 1 = ~ (T + T*), A2 = 
- ½ i ( T -  T*) ,  where A 1 and A2 are self-adjoint. Now A t w  = w A i  and A 2 w  = 
wA2  imply T w  = wT.  Hence (3) holds. This ends the proof of  Theorem 1. 

For each B E P  B ~(B) is a functional in A* which can be evaluated at any 
A E A. Since in the weak-,-topology a sequence of  functionals fn in A* is con- 
vergent to a functional f E  A* if and only if titan-+ =fn(A) = f ( A )  for every 
A E A, Theorem 1 implies the following corollary. 

Corollary i .  The following conditions are equivalent: 
(1) The map B k-+ B w B ( A )  is a complex-valued measure on PA for 
every A E A. 
(2) W commutes with B, 

We also have 

Corollary 2. I f  w C A *  is positive and commutes with B and A is a 
positive operator in A, then the map ~?A :B ~--~BwB(A) is a measure 
on P13- If, in addition, w is an integral, then g)A is a o-measure. 

Proof. In fact, from Corollary 1 it follows that this map is a complex-valued 
measure on P~; it remains to show that ~A(B) >~ 0 for all B E P  B. By defini- 
tion, we have w~4 (B) = w ( B A B ) .  Since A >~ 0 implies B * A B  = B A B  >1 0 (see 
Topping, 1971 ), and w is positive, we obtain ,~(B) > /0  for all B E P~. Hence 
#A is a measure. 

To prove the last part of  the corollary we apply a theorem of  Dixmier 
(1953) (see also Sakai, 1973, Theorem 1.13.2), which states that for a posi- 
tive functional w, if w is o-additive on every countable set of  mutually ortho- 
gonal projections in a yon Neumann algebra B (i.e., w preserves least upper 
bounds of  countable sets of  mutually orthogonal projections in a von Neumann 
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algebra), then w 0.u.b. Ac~) = 1.u.b. w(Aa) for every uniformly bounded increas- 
ing sequence As of  positive elements in A (these conditions are in fact equiva- 
lent). Consequently, if w is an integral commuting with B and A E A is positive, 
then denoting 

An= ~ Bi 
i=1 

we have 

% (~ Bi) = WA (t.u.b. An) = w (1.u.b. AAn) = t.u.b, w(AAn) 

n 

= 1.u .b .  ; ;  w(AB~)= ~ w(ABO-- ~ ~A(B~) 
i = 1  

for every countable set Bi of mutually orthogonat proiections in B. This follows 
from the theorem mentioned above, because the sequence An is increasing 
uniformly bounded and consists o f  positive elements. Hence Wa is a o-measure 
o n P  B. 

The corollary above motivates the following definition. 

Definition 3. Let A be a yon Neumann algebra, B c A avon  Neumann sub- 
algebra, w a positive functional in A* commuting with B. We shall say that 
two positive operators AI and A 2 in A are (PB, w)-equivalent if the measures 
B ~+BwB(A1) and B ~ BwB(A2) coincide on PB- 

There arises a question whether for a positive A E A there is a positive 
A o that is (PB, w)-equivalent to A and that belongs to B. I f  such A o exists it is 
called the conditional expectation of  A with respect to B and w and is denoted 
by Ew(A [B). We refer the reader to GM for a thorough discussion of  the 
properties ~f this concept and for examples showing that in case A is an 
abelian yon Neumann algebra arising from a classical probabifity space, 
Ew(A i B) coincides with the usual conditional expectation of  a given B. Here 
we would like to show that the existence ofEw(A IB) depends on the com- 
mutativity properties of  w with respect to B. Similarly as in GM, we restrict 
ourselves to considering the case where P~ is a Boolean algebra o f  projections 
(which implies that B is Abelian). 

Before we state the next theorem, let us introduce the following termin- 
ology. Let A = B(H) be the yon Neunmnn algebra of  all bounded operators 
on H. We shall say that w E A* is regular if for every B ~PA w(B) = 0 implies 
BwB = 0. Later we shall show that Gleason's theorem implies that on a separ- 
able Hilbert space every bounded positive functional is regular. 

Theorem 2. Let A = B(H) be the yon Neumann algebra o f  all 
bounded operators on a Hilbert space H and let ~ be a separable 
Bo'Nean algebra of  orthogonal projections in A (generating an abelian 
yon Neumann subalgebra B C A). Let w be a regular integral in A* 
commuting with ~ .  Then for every positive operator A E A there is 
a positive operator Ao in A all of  whose spectral projections belong 
to ~ and which is (~ ,  w)-equivalent to A. 
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Proof. By Theorem I w commutes with ~ if and only if w commutes with 
B. Hence from Corollary 2 we infer that WA :B I--~BwB(A) = Bw(A) is a 
o-measure on ~ .  Since by assumption N is separable, it is countably generated 
and consequently there is a o-homomorphism P from the Borel algebra B(R) 
on the real line (which is also countably generated and free, see Ramsey, t 966) 
onto ~ .  This homomorphism is a spectral measure and hence uniquely deter- 
mines a self-adjoint operator C in A. The composition wA o P = v 1 is a 
o-measure on B(R) that is absolutely continuous with respect to the measure 
v2 = w ~o P (w ~ denotes the restriction of  w to N). In fact, if v2(E ) = 0 for 
some Borel set E, then w(P(E)) = O. I~t P(E) = 11. Since w is regular, w(B) = 0 
implies BwB = 0. Consequently, ~A(B) = BwB(A) = 0, and v 1 (E) = WA(P(E)) = 
WA(B) = 0. Hence v 1 < v~ and the Radon-Nikodym derivative f (h)  = dvl/dv 2 
exists and is a bounded Borel-measurable function (see Halmos, 1950). Let 

Ao = f y(x)e(dX) 

Since f(X)/> O, Ao is positive, and by the definition o f  P the spectral projec- 
tions of A belong to 2 .  It remains to show that Ao is (N, w)-equivalent to A. 
We have for any B = P(E) 

BwB(Ao)= Bw(Ao)= w(BAo)= w(B f fcA)P(dX)) 

J d v 2  dr2 = ~2(~) = ~A (e(~))  = ~'A(B) = BwB(A). 
E 

Hence Ao is (&, w)-equivalent to A. This concludes the proof  of  Theorem 2. 
We shall now give a practical criterion for how to recognize that an integral 

w ~ A* commutes with an operator A E A. This criterion follows from a 
theorem of  Gleason (Gleason, 1957): Let H be a separable Hilbert space with 
dim H > 2 and let A = B(//). I f  w is a o-measure on PA then there is a unique 
positive trace class operator W such that w(A) = Tr(WA) for all A E PA. 

As shown in GM, Gleason's theorem can be extended to obtain the follow- 
ing theorem (Gleason, 1957, Gudder and Marchand, 1972): Let H b e  a separ- 
able Hilbert space with dim H > 2 and let A = B(H). If  w is an integral in A* 
then there is a unique positive trace class operator w (called the density operator 
o f  w) such that w(A) = Tr(WA) for all A ~ A. 

In fact, since an integral w E A* restricted to PA is a o-measure, the exist- 
ence o f  W follows from Gleason's theorem. It is easy to verify that w(A) = 
Tr(WA) for a l i a  E P a  implies w(A) = Tr(WA) for all A E A (we show this first 
for self-adjoint elements of  A by way of  the spectral theorem similarly as in 
the proof  o f  Theorem 1, and then for arbitrary A E A). 

With the help of  Gleason's theorem we can relate the commutativity 
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properties o f  w to the commutafivity properties o f  IV. Namely, we have the 
following theorem. 

Theorem 3. Let H b e  a separable Hilbert space with dimHT> 2 and 
let A = B(H) be the von Neumann algebra o f  all bounded linear 
operators on H. Let w E A* be an integral on A and let W be the 
density operator o f  w. Then we have the  following: 
(1) w is regular. 
(2) If  WA = A W for any A E A, then wA = Aw. 
(3) w commutes with a yon Neumann subalgebra B C A if and only 
if W E B' (B' denotes the commutant o f  B). 

Proof  To prove (1) we have to show that w(B) = 0 for any B E P  A implies 
BwB = 0. I f  w(B) = 0 then w(B) = Tr(WB) = Tr(WB 2) = Tr(BWB) = 0. Since W 
is positive and B self-adjoint, BWB is also positive and consequently BWB = O. 
Now for every A E A ,  BwB(A)  = w(BAB) = Tr(WBAB) = Tr(BWBA) = 0, i.e., 
BwB = 0. Hence (1) holds. 

Next assume that WA = A W  for some A E A. Then for all B E A wA(B) = 
w(BA) = Tr(WBA) = Tr(A WB)= Tr(WAB) = w(AB) = Aw(B),  which implies 
wA = Aw. Hence (2) holds. 

Property (2) implies that if IV E B' then wA = A w  for all A ~ B, i.e., w 
commutes with B. Hence (3) holds one way. Conversely, assume that w com- 
mutes with B. In particular, this implies that wB = Bw for any projection 
B E PB. Multiplying this identity on the left and on the right by B we get 
BwB = wB BwB = Bw. Adding side by side we get 2BwB = wB + Bw. This 
implies 2w(BAB) = w(AB) + w(BA) for all A E A, and consequently 2Tr(WBAB) = 
Tr(WAB) + Tr(WBA), or 2Tr(BWBA) = Tr((BW + WB)A). Taking A = P~ the one- 
dimensional projection on the unit vector 4, ~ E H, we infer that (2BWB¢, (~) = 
((BW + WB)~, 4) for aI1 ~ E H, I[ ¢II = 1. Since BIVB and WB + BW are self- 
adjoint, the two quadratic forms Coincide on the unit sphere of  H, which 
implies that 2BWB= B W  + WB for all B E PB (Kato, 1966). Multiplying on 
the left and on the right by B we obtain BWB = WB = BW, which shows that 
IV commutes with all projections in B. Reasoning analogously as in the proof 
of Theorem 1, we show that W commutes with all members of B, i.e., W E B'. 
Hence (3) holds. This ends the proof o f  Theorem 3. 
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